Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of the Bridging Atom in Fluorene Analogue Low-Bandgap Polymers on Photophysical and Morphological Properties of Copper Indium Sulfide/Polymer Nanocomposite Solar Cells

Identifieur interne : 000A37 ( Main/Repository ); précédent : 000A36; suivant : 000A38

Influence of the Bridging Atom in Fluorene Analogue Low-Bandgap Polymers on Photophysical and Morphological Properties of Copper Indium Sulfide/Polymer Nanocomposite Solar Cells

Auteurs : RBID : Pascal:13-0312685

Descripteurs français

English descriptors

Abstract

This contribution presents the correlation between structural, morphological, and fluorescence properties as well as device performance of nanocomposite solar cells comprising two low-band gap polymers, poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) and poly[2,1,3-benzothiadiazole-4, 7-diyl-2,5-thiophenediyl(9,9-dioctyl-9H-9-silafluorene-2,7-diyl)-2,5-thiophenediyl] (PSiF-DBT) and copper indium sulfide (CIS). It shows that, in analogy to organic solar cells, the device efficiency is strongly determined by different polymer structures leading to a different packing of the polymer chains and consequently to diverse morphologies. X-ray diffraction investigation indicates increased semicrystallinity in PSiF-DBT compared with the nitrogen analogue PCDTBT. The photoluminescence (PL) quenching of this polymer indicates that the higher photogeneration achieved in PSiF-DBT based films can be correlated to a favorable donor-acceptor phase separation. Transmission electron microscopy studies of PCDTBT:CIS blended films suggest the formation of polymer agglomerates in the layer resulting in a decreased PL quenching efficiency. For the considered polymer:CIS system, the combination of these effects leads to an enhanced overall device efficiency.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0312685

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Influence of the Bridging Atom in Fluorene Analogue Low-Bandgap Polymers on Photophysical and Morphological Properties of Copper Indium Sulfide/Polymer Nanocomposite Solar Cells</title>
<author>
<name sortKey="J Ger, Monika" uniqKey="J Ger M">Monika J Ger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler-Strasse 32</s1>
<s2>8160 Weiz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8160 Weiz</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trattnig, Roman" uniqKey="Trattnig R">Roman Trattnig</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler-Strasse 32</s1>
<s2>8160 Weiz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8160 Weiz</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Postl, Markus" uniqKey="Postl M">Markus Postl</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler-Strasse 32</s1>
<s2>8160 Weiz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8160 Weiz</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haas, Wernfried" uniqKey="Haas W">Wernfried Haas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Steyrergasse 17</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kunert, Birgit" uniqKey="Kunert B">Birgit Kunert</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Solid State Physics, Graz University of Technology, Petersgasse 16</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Resel, Roland" uniqKey="Resel R">Roland Resel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Solid State Physics, Graz University of Technology, Petersgasse 16</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hofer, Ferdinand" uniqKey="Hofer F">Ferdinand Hofer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Steyrergasse 17</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klug, Andreas" uniqKey="Klug A">Andreas Klug</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler-Strasse 32</s1>
<s2>8160 Weiz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8160 Weiz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trimmel, Gregor" uniqKey="Trimmel G">Gregor Trimmel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="List, Emil J W" uniqKey="List E">Emil J. W. List</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler-Strasse 32</s1>
<s2>8160 Weiz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8160 Weiz</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Solid State Physics, Graz University of Technology, Petersgasse 16</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>8010 Graz</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0312685</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0312685 INIST</idno>
<idno type="RBID">Pascal:13-0312685</idno>
<idno type="wicri:Area/Main/Corpus">000692</idno>
<idno type="wicri:Area/Main/Repository">000A37</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0887-6266</idno>
<title level="j" type="abbreviated">J. polym. sci., Part B, Polym. phys.</title>
<title level="j" type="main">Journal of polymer science. Part B. Polymer physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aromatic copolymer</term>
<term>Carbazole derivative copolymer</term>
<term>Charge carrier mobility</term>
<term>Comparative study</term>
<term>Concentration effect</term>
<term>Conjugated copolymer</term>
<term>Copper Indium Sulfides</term>
<term>Experimental study</term>
<term>Field effect transistor</term>
<term>Fill factor</term>
<term>Nanocomposite</term>
<term>Nitrogen heterocycle copolymer</term>
<term>Open circuit voltage</term>
<term>Optical absorption</term>
<term>Organic solar cells</term>
<term>Photoluminescence</term>
<term>Short circuit currents</term>
<term>Silicon copolymer</term>
<term>Supramolecular structure</term>
<term>Surface topography</term>
<term>Terpolymer</term>
<term>Thiophene copolymer</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Nanocomposite</term>
<term>Carbazole dérivé copolymère</term>
<term>Thiophène copolymère</term>
<term>Copolymère hétérocyclique azote</term>
<term>Copolymère silicium</term>
<term>Copolymère conjugué</term>
<term>Copolymère aromatique</term>
<term>Terpolymère</term>
<term>Cuivre Indium Sulfure</term>
<term>Structure supramoléculaire</term>
<term>Topographie surface</term>
<term>Absorption optique</term>
<term>Photoluminescence</term>
<term>Transistor effet champ</term>
<term>Mobilité porteur charge</term>
<term>Cellule solaire organique</term>
<term>Tension circuit ouvert</term>
<term>Courant court circuit</term>
<term>Facteur remplissage</term>
<term>Effet concentration</term>
<term>Etude comparative</term>
<term>Etude expérimentale</term>
<term>Silafluorène dérivé copolymère</term>
<term>Carbazole(9-[1-octylnonyl]) copolymère</term>
<term>Benzothiadiazole copolymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This contribution presents the correlation between structural, morphological, and fluorescence properties as well as device performance of nanocomposite solar cells comprising two low-band gap polymers, poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) and poly[2,1,3-benzothiadiazole-4, 7-diyl-2,5-thiophenediyl(9,9-dioctyl-9H-9-silafluorene-2,7-diyl)-2,5-thiophenediyl] (PSiF-DBT) and copper indium sulfide (CIS). It shows that, in analogy to organic solar cells, the device efficiency is strongly determined by different polymer structures leading to a different packing of the polymer chains and consequently to diverse morphologies. X-ray diffraction investigation indicates increased semicrystallinity in PSiF-DBT compared with the nitrogen analogue PCDTBT. The photoluminescence (PL) quenching of this polymer indicates that the higher photogeneration achieved in PSiF-DBT based films can be correlated to a favorable donor-acceptor phase separation. Transmission electron microscopy studies of PCDTBT:CIS blended films suggest the formation of polymer agglomerates in the layer resulting in a decreased PL quenching efficiency. For the considered polymer:CIS system, the combination of these effects leads to an enhanced overall device efficiency.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0887-6266</s0>
</fA01>
<fA02 i1="01">
<s0>JPLPAY</s0>
</fA02>
<fA03 i2="1">
<s0>J. polym. sci., Part B, Polym. phys.</s0>
</fA03>
<fA05>
<s2>51</s2>
</fA05>
<fA06>
<s2>19</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Influence of the Bridging Atom in Fluorene Analogue Low-Bandgap Polymers on Photophysical and Morphological Properties of Copper Indium Sulfide/Polymer Nanocomposite Solar Cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JÄGER (Monika)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TRATTNIG (Roman)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>POSTL (Markus)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HAAS (Wernfried)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KUNERT (Birgit)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RESEL (Roland)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HOFER (Ferdinand)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KLUG (Andreas)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>TRIMMEL (Gregor)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>LIST (Emil J. W.)</s1>
</fA11>
<fA14 i1="01">
<s1>NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler-Strasse 32</s1>
<s2>8160 Weiz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz Forschungsgesellschaft mbH</s1>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Steyrergasse 17</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute of Solid State Physics, Graz University of Technology, Petersgasse 16</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9</s1>
<s2>8010 Graz</s2>
<s3>AUT</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>1400-1410</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6199A2</s2>
<s5>354000501531060020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>13-0312685</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of polymer science. Part B. Polymer physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fA99>
<s0>ref. et notes dissem.</s0>
</fA99>
<fC01 i1="01" l="ENG">
<s0>This contribution presents the correlation between structural, morphological, and fluorescence properties as well as device performance of nanocomposite solar cells comprising two low-band gap polymers, poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) and poly[2,1,3-benzothiadiazole-4, 7-diyl-2,5-thiophenediyl(9,9-dioctyl-9H-9-silafluorene-2,7-diyl)-2,5-thiophenediyl] (PSiF-DBT) and copper indium sulfide (CIS). It shows that, in analogy to organic solar cells, the device efficiency is strongly determined by different polymer structures leading to a different packing of the polymer chains and consequently to diverse morphologies. X-ray diffraction investigation indicates increased semicrystallinity in PSiF-DBT compared with the nitrogen analogue PCDTBT. The photoluminescence (PL) quenching of this polymer indicates that the higher photogeneration achieved in PSiF-DBT based films can be correlated to a favorable donor-acceptor phase separation. Transmission electron microscopy studies of PCDTBT:CIS blended films suggest the formation of polymer agglomerates in the layer resulting in a decreased PL quenching efficiency. For the considered polymer:CIS system, the combination of these effects leads to an enhanced overall device efficiency.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D10A08</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Nanocomposite</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Nanocomposite</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Nanocompuesto</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Carbazole dérivé copolymère</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Carbazole derivative copolymer</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Carbazol derivado copolímero</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Thiophène copolymère</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Thiophene copolymer</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Tiofeno copolímero</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Copolymère hétérocyclique azote</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Nitrogen heterocycle copolymer</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Copolímero heterocíclico nitrógeno</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Copolymère silicium</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Silicon copolymer</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Copolímero silicio</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Copolymère conjugué</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Conjugated copolymer</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Copolímero conjugado</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Copolymère aromatique</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Aromatic copolymer</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Copolímero aromático</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Terpolymère</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Terpolymer</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Terpolímero</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Cuivre Indium Sulfure</s0>
<s1>SEC</s1>
<s2>NC</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Copper Indium Sulfides</s0>
<s1>SEC</s1>
<s2>NC</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Cobre Indio Sulfuro</s0>
<s1>SEC</s1>
<s2>NC</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Structure supramoléculaire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Supramolecular structure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estructura supramolecular</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Topographie surface</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Surface topography</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Absorption optique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Optical absorption</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Absorción óptica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Photoluminescence</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Photoluminescence</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Fotoluminiscencia</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Transistor effet champ</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Field effect transistor</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Transistor efecto campo</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Charge carrier mobility</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Movilidad portador carga</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Courant court circuit</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Short circuit currents</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Effet concentration</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Concentration effect</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Efecto concentración</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>28</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>28</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>28</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Silafluorène dérivé copolymère</s0>
<s2>NK</s2>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Carbazole(9-[1-octylnonyl]) copolymère</s0>
<s2>NK</s2>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Benzothiadiazole copolymère</s0>
<s2>NK</s2>
<s4>INC</s4>
<s5>34</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>16</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>16</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>16</s5>
</fC07>
<fN21>
<s1>294</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000A37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0312685
   |texte=   Influence of the Bridging Atom in Fluorene Analogue Low-Bandgap Polymers on Photophysical and Morphological Properties of Copper Indium Sulfide/Polymer Nanocomposite Solar Cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024